

Funded by the Horizon 2020 programme of the European Union

T u e s d a y , 3 1 J a n u a r y 2 0 1 7

GIT-FLOW Guidelines

For IT developers

Elaborated by CREM :

- Lesly Houndole, lesly.houndole@crem.ch
- Vincent Roch, vincent.roch@crem.ch

With the support of HES-SO :

- Daniel Hunacek, daniel.hunacek@hevs.ch
- Antoine Widmer antoine.widmer@hevs.ch

mailto:lesly.houndole@crem.ch
mailto:vincent.roch@crem.ch
mailto:daniel.hunacek@hevs.ch
mailto:antoine.widmer@hevs.ch

2

Date: 31/01/2017

Table of Contents

Introduction .. 3

Glossary of terms... 4

Responsabilities .. 5

Access rights .. 5

Git-flow definition ... 6

How do we use Git-flow? ... 7

Branches ..7

Master and Develop branches ..7

Feature branches ...8

Hotfix branches ...9

Release branches .. 10

References ... 11

3

Introduction

This document has been written to outline and define the version control process we will be
using for HotMaps 2020 project. It is aimed at anyone who would like to get involved by
contributing to the source code. We will be using Git to version control the codebase.
Our aim is to keep a clean but informative history of commits, allowing us to revert mistakes
easily.

We will use “Bump version” in order to increment the version number to a new, unique
value. Bump is a software project's VERSION which adds the CHANGES, and tags with GIT.
You can download bump at:
https://gist.github.com/pete-otaqui/4188238

https://gist.github.com/pete-otaqui/4188238

4

Glossary of terms

This section describes the basic terms we use and assume knowledge of. Full documentation
of Git terms can be found at:
https://git-scm.com/doc

Term Description

Repository
A Git repository is essentially a collection of branches, all related to
the same code base.

Commit
A commit in Git can be thought of as a snapshot of the repository at
any given point.

Commit message
A commit message is the message that describes the changes made
in a commit, viewable with ‘git log’.

Branch

A branch in Git can be thought of as a sequence of commits which
can be separated from all other commits. A branch may be merged
or rebased onto another branch to insert its commit history to other
branches.

Master

The master branch is the parent branch of all other branches,
including develop branch. In our process, it will receive only two
types of commits: Hotfixes and Major updates. The master branch
will always contain stable code and will be what the public will
receive.

Develop

The develop branch is a branch take from the master branch. It is
where all feature branches will be derived from. The code contained
in develop should always be stable. This branch will be the source of
the latest codebase, including nightly builds for example. Develop
will receive all Hotfixes as well as master.

Feature
A feature branch is a branch used to develop a new functionality.
Very large feature additions may require multiple feature branches
to be created.

Hotfix
A hotfix branch is used for critical bug fixes. This type of branch is
taken directly from master and, once the work is completed, merged
directly to master and develop

Release A release branch support preparation of a new production release

Tag
A tag is the term used to define a textual label that can be
associated with a specific revision.

Pull requests

Pull requests let you tell others about changes you have pushed to a
repository on Git. Once a pull request is opened, you can discuss and
review the potential changes with collaborators and add follow-up
commits before the changes are merged into the repository.

https://git-scm.com/doc

5

Responsabilities

CREM, HES-SO and TUW will be responsible for reviewing the code. Everyone else will have
to use pull request in order to modify master, develop, and release branch.

All source code for HotMaps Project must take place in the Git repositories owned by TUW.

Access rights

There are two kinds of access rights:

 owner access

 collaborator access

The repository owner will have full access to the repository:

 Invite collaborators (https://help.github.com/articles/inviting-collaborators-to-a-
personal-repository)

 Change the visibility of the repository

 Merge a pull request on a protected branch, even if there are no approved reviews

 Delete the repository (https://help.github.com/articles/deleting-a-repository)

Collaborator access has limited access to the repository:

 Push to (write), pull from (read), and fork (copy) the repository

 Apply labels and milestones

 Open, close, re-open, and assign issues

 Edit and delete comments on commits, pull requests, and issues

 Merge and close pull requests

 Send pull requests from forks of the repository

 Create and edit Wikis

 Create and edit Releases

 Remove themselves as collaborators on the repository

 Submit a review on a pull request that will affect its “mergeability”

For HotMaps projects, the following collaborators will have the owner access:

 Daniel Hunacek, HES-SO, daniel.Hunacek@hevs.ch

 Mostafa Fallahnejad, TUW, fallahnejad@eeg.tuwien.ac.at

 Lesly Houndole, CREM, Lesly.houndole@crem.ch

 Sara Fritz TU Wien, fritz@eeg.tuwien.ac.at

https://help.github.com/articles/inviting-collaborators-to-a-personal-repository
https://help.github.com/articles/inviting-collaborators-to-a-personal-repository
https://help.github.com/articles/deleting-a-repository
mailto:daniel.Hunacek@hevs.ch
mailto:fallahnejad@eeg.tuwien.ac.at
mailto:Lesly.houndole@crem.ch

6

Git-flow definition

Git-flow is a workflow for development with the Git version control system. It is how we
structure our repository, our commits and branches. Git-flow is essentially no more than a
set of procedures that every team member has to follow in order to come to a managed
software development process. The diagram below (see URL below) shows an overview of
this process:

For the most part, this document is based on Vincent Driessen's article “A successful Git
branching model” at http://nvie.com/posts/a-successful-git-branching-model/.

The develop branch will always aim to be stable, and bugs will have a branch created to fix
them. We will enforce this by running tests for pre- and post- merges of the develop branch,
and code reviews for all merge requests.

http://nvie.com/posts/a-successful-git-branching-model/

7

How do we use Git-flow?

Branches

Master and Develop branches

There will be two long running branches, master
and develop. These will be protected branches,
meaning only a few persons will have the right to
push changes directly to these branches. All
additions to these branches must be done via a
merge request (pull request). This allows code
review of everything that enters the framework
and ensure both master and develop branches stay
stable.

8

Feature branches

When developing new functionalities or features, or simply

refactoring/optimizing core code, you should create a feature

branch. Feature branches are branched from develop and named

after their ticket number or a brief description of the work being

done.

Rules for feature branch:

 Must branch off from develop

 Must merge back into develop

Naming convention:

Feature branches should always be prefixed with “feature-”, for example “feature-12345”

or “feature-something”.

Commands :

Switched to a new branch "myfeature":

$ git checkout -b myfeature develop

After adding new feature “myfeature” branch

Switch to branch develop:

$ git checkout develop

Merge “myfeature” branch to develop

$ git merge --no-ff myfeature

Delete branch “myfeature”

$ git branch -d myfeature

Push to develop branch

$ git push origin develop

9

Hotfix branches

When a serious bug is found or a fix is needed

immediately, you should create a hotfix branch.

Hotfix branches are spun directly from master,

tested as soon as possible and merged into the

master branch using a -squash merge. This gives us a

commit checkpoint of the fix being implemented.

Hotfix branches should also be merged directly into

develop.

Rules for Hotfix branch:

 Must branch off from master

 Must merge back into develop and master

Naming convention:

Hotfix branches should always be prefixed with “hotfix-”, for example “hotfix-*”

Command:

Switched to a new branch "hotfix-1.2.1"

$ git checkout -b hotfix-1.2.1 master

Files modified successfully, version bumped to 1.2.1.

$./bumpversion.sh 1.2.1

[hotfix-1.2.1 41e61bb] Bumped version number to 1.2.1

$ git commit -a -m "Bumped version number to 1.2.1"

1 files changed, 1 insertions(+), 1 deletions(-)

It is really important to bump the version number after branching off!

Then you should commit the fix

$ git commit -m "Fixed severe production problem"

[hotfix-1.2.1 abbe5d6] Fixed severe production problem

5 files changed, 32 insertions(+), 17 deletions

https://gist.github.com/pete-otaqui/4188238

10

At the end we merge back into master and develop.
Switched to branch master

$ git checkout master

Merge made by recursive. (Summary of changes).

$ git merge --no-ff hotfix-1.2.1

You should not forget to tag this version of code.

$ git tag -a 1.2.1

After the code is pushed on master you should push it again on develop.
Switched to branch develop.

$ git checkout develop

Merge made by recursive. (Summary of changes)

$ git merge --no-ff hotfix-1.2.1

There is an exception to the rules we write above. If there is a release branch, you must
merge on release branch instead of develop.

Rules for Hotfix branch when release branch currently exists:

 Must branch off from master

 Must merge back into release and master and develop

Delete branch hotfix-1.2.1 (was abbe5d6).

$ git branch -d hotfix-1.2.1

Release branches

Release branch is the branch that will be used for the new production release. Release

branches are created from develop branch

Rules for release branches:

 Must branch off from develop

 Must merge back into develop and master

Naming convention:

Release branches should always be prefixed with “release-*/”, for example “release-1.2”

Command:

Switch to a new branch "release-1.2"
$ git checkout -b release-1.2 develop

Files modified successfully, version bumped to 1.2.
$./bump-version.sh 1.2

11

After you should make a commit
$ git commit -a -m "Bumped version number to 1.2"

When the release branch is online, you should switch to release and merge it to master, then
tag the master branch. Afterwards you should merge back to develop as follow.

Switched to branch master
$ git checkout master

Merge made by recursive. (Summary of changes)
$ git merge --no-ff release-1.2

Tag this version of code
$ git tag -a 1.2

Switched to branch develop
$ git checkout develop

Merge made by recursive. (Summary of changes)
$ git merge --no-ff release-1.2

References

 https://gist.github.com/pete-otaqui/4188238

 http://nvie.com/posts/a-successful-git-branching-model/

 https://git-scm.com/doc

 https://git-scm.com/book/en/v2/Git-Tools-Submodules

https://gist.github.com/pete-otaqui/4188238
http://nvie.com/posts/a-successful-git-branching-model/
https://git-scm.com/doc

Funded by the Horizon 2020 programme of the European Union

